Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- MySQL
- 큐
- 코딩테스트
- 튜토리얼
- 스택
- Recsys-KR
- 추천시스템
- Python
- 협업필터링
- TEAM-EDA
- Machine Learning Advanced
- eda
- 프로그래머스
- 입문
- hackerrank
- DFS
- Semantic Segmentation
- Segmentation
- 파이썬
- 나는리뷰어다
- 나는 리뷰어다
- TEAM EDA
- 3줄 논문
- Image Segmentation
- 알고리즘
- DilatedNet
- Object Detection
- 엘리스
- 한빛미디어
- pytorch
Archives
- Today
- Total
TEAM EDA
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation (DeepLabv3+) Code 본문
EDA Study/Image Segmentation
Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation (DeepLabv3+) Code
김현우 2021. 9. 23. 17:42- 이론 : https://eda-ai-lab.tistory.com/598
- 코드 출처 : https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/backbone/xception.py
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
# 출처 : https://github.com/jfzhang95/pytorch-deeplab-xception/blob/master/modeling/backbone/xception.py
def fixed_padding(inputs, kernel_size, dilation):
kernel_size_effective = kernel_size + (kernel_size - 1) * (dilation - 1)
pad_total = kernel_size_effective - 1
pad_beg = pad_total // 2
pad_end = pad_total - pad_beg
padded_inputs = F.pad(inputs, (pad_beg, pad_end, pad_beg, pad_end))
return padded_inputs
class SeparableConv2d(nn.Module):
def __init__(self, inplanes, planes, kernel_size=3, stride=1, dilation=1, bias=False, BatchNorm=None):
super(SeparableConv2d, self).__init__()
self.conv1 = nn.Conv2d(inplanes, inplanes, kernel_size, stride, 0, dilation,
groups=inplanes, bias=bias)
self.bn = nn.BatchNorm2d(inplanes)
self.pointwise = nn.Conv2d(inplanes, planes, 1, 1, 0, 1, 1, bias=bias)
def forward(self, x):
x = fixed_padding(x, self.conv1.kernel_size[0], dilation=self.conv1.dilation[0])
x = self.conv1(x)
x = self.bn(x)
x = self.pointwise(x)
return x
class Block(nn.Module):
def __init__(self, inplanes, planes, reps, stride=1, dilation=1, BatchNorm=None,
start_with_relu=True, grow_first=True, is_last=False):
super(Block, self).__init__()
if planes != inplanes or stride != 1:
self.skip = nn.Conv2d(inplanes, planes, 1, stride=stride, bias=False)
self.skipbn = BatchNorm(planes)
else:
self.skip = None
self.relu = nn.ReLU(inplace=True)
rep = []
filters = inplanes
if grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(inplanes, planes, 3, 1, dilation, BatchNorm=BatchNorm))
rep.append(BatchNorm(planes))
filters = planes
for i in range(reps - 1):
rep.append(self.relu)
rep.append(SeparableConv2d(filters, filters, 3, 1, dilation, BatchNorm=BatchNorm))
rep.append(BatchNorm(filters))
if not grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(inplanes, planes, 3, 1, dilation, BatchNorm=BatchNorm))
rep.append(BatchNorm(planes))
if stride != 1:
rep.append(self.relu)
rep.append(SeparableConv2d(planes, planes, 3, 2, BatchNorm=BatchNorm))
rep.append(BatchNorm(planes))
if stride == 1 and is_last:
rep.append(self.relu)
rep.append(SeparableConv2d(planes, planes, 3, 1, BatchNorm=BatchNorm))
rep.append(BatchNorm(planes))
if not start_with_relu:
rep = rep[1:]
self.rep = nn.Sequential(*rep)
def forward(self, inp):
x = self.rep(inp)
if self.skip is not None:
skip = self.skip(inp)
skip = self.skipbn(skip)
else:
skip = inp
x = x + skip
return x
class AlignedXception(nn.Module):
"""
Modified Alighed Xception
"""
def __init__(self, output_stride, BatchNorm,
pretrained=True):
super(AlignedXception, self).__init__()
if output_stride == 16:
entry_block3_stride = 2
middle_block_dilation = 1
exit_block_dilations = (1, 2)
elif output_stride == 8:
entry_block3_stride = 1
middle_block_dilation = 2
exit_block_dilations = (2, 4)
else:
raise NotImplementedError
# Entry flow
self.conv1 = nn.Conv2d(3, 32, 3, stride=2, padding=1, bias=False)
self.bn1 = BatchNorm(32)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(32, 64, 3, stride=1, padding=1, bias=False)
self.bn2 = BatchNorm(64)
self.block1 = Block(64, 128, reps=2, stride=2, BatchNorm=BatchNorm, start_with_relu=False)
self.block2 = Block(128, 256, reps=2, stride=2, BatchNorm=BatchNorm, start_with_relu=False,
grow_first=True)
self.block3 = Block(256, 728, reps=2, stride=entry_block3_stride, BatchNorm=BatchNorm,
start_with_relu=True, grow_first=True, is_last=True)
# Middle flow
self.block4 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block5 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block6 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block7 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block8 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block9 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block10 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block11 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block12 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block13 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block14 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block15 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block16 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block17 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block18 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
self.block19 = Block(728, 728, reps=3, stride=1, dilation=middle_block_dilation,
BatchNorm=BatchNorm, start_with_relu=True, grow_first=True)
# Exit flow
self.block20 = Block(728, 1024, reps=2, stride=1, dilation=exit_block_dilations[0],
BatchNorm=BatchNorm, start_with_relu=True, grow_first=False, is_last=True)
self.conv3 = SeparableConv2d(1024, 1536, 3, stride=1, dilation=exit_block_dilations[1], BatchNorm=BatchNorm)
self.bn3 = BatchNorm(1536)
self.conv4 = SeparableConv2d(1536, 1536, 3, stride=1, dilation=exit_block_dilations[1], BatchNorm=BatchNorm)
self.bn4 = BatchNorm(1536)
self.conv5 = SeparableConv2d(1536, 2048, 3, stride=1, dilation=exit_block_dilations[1], BatchNorm=BatchNorm)
self.bn5 = BatchNorm(2048)
# Init weights
self._init_weight()
# Load pretrained model
if pretrained:
self._load_pretrained_model()
def forward(self, x):
# Entry flow
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)
x = self.block1(x)
# add relu here
x = self.relu(x)
low_level_feat = x
x = self.block2(x)
x = self.block3(x)
# Middle flow
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)
x = self.block13(x)
x = self.block14(x)
x = self.block15(x)
x = self.block16(x)
x = self.block17(x)
x = self.block18(x)
x = self.block19(x)
# Exit flow
x = self.block20(x)
x = self.relu(x)
x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)
x = self.conv4(x)
x = self.bn4(x)
x = self.relu(x)
x = self.conv5(x)
x = self.bn5(x)
x = self.relu(x)
return x, low_level_feat
def _init_weight(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _load_pretrained_model(self):
pretrain_dict = model_zoo.load_url('http://data.lip6.fr/cadene/pretrainedmodels/xception-b5690688.pth')
model_dict = {}
state_dict = self.state_dict()
for k, v in pretrain_dict.items():
if k in state_dict:
if 'pointwise' in k:
v = v.unsqueeze(-1).unsqueeze(-1)
if k.startswith('block11'):
model_dict[k] = v
model_dict[k.replace('block11', 'block12')] = v
model_dict[k.replace('block11', 'block13')] = v
model_dict[k.replace('block11', 'block14')] = v
model_dict[k.replace('block11', 'block15')] = v
model_dict[k.replace('block11', 'block16')] = v
model_dict[k.replace('block11', 'block17')] = v
model_dict[k.replace('block11', 'block18')] = v
model_dict[k.replace('block11', 'block19')] = v
elif k.startswith('block12'):
model_dict[k.replace('block12', 'block20')] = v
elif k.startswith('bn3'):
model_dict[k] = v
model_dict[k.replace('bn3', 'bn4')] = v
elif k.startswith('conv4'):
model_dict[k.replace('conv4', 'conv5')] = v
elif k.startswith('bn4'):
model_dict[k.replace('bn4', 'bn5')] = v
else:
model_dict[k] = v
state_dict.update(model_dict)
self.load_state_dict(state_dict)
if __name__ == "__main__":
import torch
model = AlignedXception(BatchNorm=nn.BatchNorm2d, pretrained=False, output_stride=16)
input = torch.rand(1, 3, 512, 512)
output, low_level_feat = model(input)
print(output.size())
print(low_level_feat.size())