Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- DilatedNet
- 입문
- 튜토리얼
- 큐
- Segmentation
- Semantic Segmentation
- hackerrank
- 스택
- Image Segmentation
- Python
- 파이썬
- 나는리뷰어다
- 코딩테스트
- 엘리스
- 한빛미디어
- TEAM-EDA
- 프로그래머스
- pytorch
- Object Detection
- 나는 리뷰어다
- TEAM EDA
- 협업필터링
- Machine Learning Advanced
- MySQL
- 추천시스템
- eda
- 알고리즘
- Recsys-KR
- DFS
- 3줄 논문
Archives
- Today
- Total
TEAM EDA
Pyramid Scene Parsing Network (PSPNet) Code 본문
#!/usr/bin/env python
# coding: utf-8
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import torch.utils.model_zoo as model_zoo
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
'resnet152']
model_urls = {
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000, deep_base=True):
super(ResNet, self).__init__()
self.deep_base = deep_base
if not self.deep_base:
self.inplanes = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
else:
self.inplanes = 128
self.conv1 = conv3x3(3, 64, stride=2)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = conv3x3(64, 64)
self.bn2 = nn.BatchNorm2d(64)
self.conv3 = conv3x3(64, 128)
self.bn3 = nn.BatchNorm2d(128)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AvgPool2d(7, stride=1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.relu(self.bn1(self.conv1(x)))
if self.deep_base:
x = self.relu(self.bn2(self.conv2(x)))
x = self.relu(self.bn3(self.conv3(x)))
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def resnet18(pretrained=False, **kwargs):
"""Constructs a ResNet-18 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet18']))
return model
def resnet34(pretrained=False, **kwargs):
"""Constructs a ResNet-34 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['resnet34']))
return model
def resnet50(pretrained=False, **kwargs):
"""Constructs a ResNet-50 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs)
if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet50']))
model_path = './initmodel/resnet50_v2.pth'
model.load_state_dict(torch.load(model_path), strict=False)
return model
def resnet101(pretrained=False, **kwargs):
"""Constructs a ResNet-101 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs)
if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet101']))
model_path = './initmodel/resnet101_v2.pth'
model.load_state_dict(torch.load(model_path), strict=False)
return model
def resnet152(pretrained=False, **kwargs):
"""Constructs a ResNet-152 model.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
"""
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs)
if pretrained:
# model.load_state_dict(model_zoo.load_url(model_urls['resnet152']))
model_path = './initmodel/resnet152_v2.pth'
model.load_state_dict(torch.load(model_path), strict=False)
return model
class PPM(nn.Module):
def __init__(self, in_dim, reduction_dim, bins):
super(PPM, self).__init__()
self.features = []
# bins = (1, 2, 3, 6) : 1x1, 2x2, 3x3, 6x6
for bin in bins:
self.features.append(nn.Sequential(
# Pyramid scale에 따라 각각의 pooling을 생성
nn.AdaptiveAvgPool2d(bin),
# 1/N으로 dimension reduction (reduction_dim = 4, pyramid level의 수)
nn.Conv2d(in_dim, reduction_dim, kernel_size=1, bias=False),
nn.BatchNorm2d(reduction_dim),
nn.ReLU(inplace=True)
))
self.features = nn.ModuleList(self.features)
def forward(self, x):
x_size = x.size()
out = [x]
for f in self.features:
out.append(F.interpolate(f(x), x_size[2:], mode='bilinear', align_corners=True))
# 각각의 pyramid scale에 따른 pooling 결과들을 concatenate
return torch.cat(out, 1)
class PSPNet(nn.Module):
def __init__(self, layers=50, bins=(1, 2, 3, 6), dropout=0.1, classes=2, zoom_factor=8, pretrained=True):
super(PSPNet, self).__init__()
# output의 크기를 원본 이미지와 동일하게 복원하기 위한 값
# Feature map의 크기는 원본 이미지의 1/8
self.zoom_factor = zoom_factor
self.criterion = nn.CrossEntropyLoss()
# ResNet
if layers == 50:
resnet = resnet50(pretrained=pretrained)
elif layers == 101:
resnet = resnet101(pretrained=pretrained)
else:
resnet = resnet152(pretrained=pretrained)
# ResNet with dilated network
self.layer0 = nn.Sequential(resnet.conv1, resnet.bn1, resnet.relu,
resnet.conv2, resnet.bn2, resnet.relu,
resnet.conv3, resnet.bn3, resnet.relu, resnet.maxpool)
self.layer1 = resnet.layer1
self.layer2 = resnet.layer2
self.layer3 = resnet.layer3
self.layer4 = resnet.layer4
for n, m in self.layer3.named_modules():
if 'conv2' in n:
m.dilation, m.padding, m.stride = (2, 2), (2, 2), (1, 1)
elif 'downsample.0' in n:
m.stride = (1, 1)
for n, m in self.layer4.named_modules():
if 'conv2' in n:
m.dilation, m.padding, m.stride = (4, 4), (4, 4), (1, 1)
elif 'downsample.0' in n:
m.stride = (1, 1)
# Dilated ResNet output size : torch.Size([4, 2048, 60, 60])
fea_dim = 2048
self.ppm = PPM(in_dim = fea_dim, reduction_dim = int(fea_dim / len(bins)), bins=bins)
# Pyramid Pooling Module output size : torch.Size([4, 4096, 60, 60])
fea_dim *= 2 # 4096
self.cls = nn.Sequential(
nn.Conv2d(fea_dim, 512, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Dropout2d(p=dropout),
nn.Conv2d(512, classes, kernel_size=1)
)
if self.training:
self.aux = nn.Sequential(
nn.Conv2d(1024, 256, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Dropout2d(p=dropout),
nn.Conv2d(256, classes, kernel_size=1)
)
def forward(self, x, y=None):
x_size = x.size()
# Input image's height, width
h = int((x_size[2] - 1) / 8 * self.zoom_factor + 1)
w = int((x_size[3] - 1) / 8 * self.zoom_factor + 1)
# Resnet with dilated network
x = self.layer0(x)
x = self.layer1(x)
x = self.layer2(x)
x_tmp = self.layer3(x)
x = self.layer4(x_tmp)
# Pyramid Pooling Module
x = self.ppm(x)
# Master branch
x = self.cls(x)
# 원본 이미지 크기로 upsampling
if self.zoom_factor != 1:
x = F.interpolate(x, size=(h, w), mode='bilinear', align_corners=True)
if self.training:
# Auxiliary Loss는 training에서만 사용
aux = self.aux(x_tmp)
# 원본 이미지 크기로 upsampling
if self.zoom_factor != 1:
aux = F.interpolate(aux, size=(h, w), mode='bilinear', align_corners=True)
main_loss = self.criterion(x, y)
aux_loss = self.criterion(aux, y)
return x.max(1)[1], main_loss, aux_loss
else:
return x
# pspnet = PSPNet(layers=50, bins=(1, 2, 3, 6), dropout=0.1, classes=2, zoom_factor=8, pretrained=False)