Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- Semantic Segmentation
- 프로그래머스
- 엘리스
- 3줄 논문
- 나는리뷰어다
- MySQL
- pytorch
- Recsys-KR
- Python
- DFS
- TEAM-EDA
- Machine Learning Advanced
- 한빛미디어
- 스택
- 큐
- Segmentation
- 파이썬
- 추천시스템
- 알고리즘
- TEAM EDA
- 협업필터링
- 입문
- DilatedNet
- 나는 리뷰어다
- eda
- Object Detection
- 코딩테스트
- Image Segmentation
- hackerrank
- 튜토리얼
Archives
- Today
- Total
TEAM EDA
Rethinking Atrous Convolution for Semantic Image Segmentation (DeepLabv3) Code 본문
EDA Study/Image Segmentation
Rethinking Atrous Convolution for Semantic Image Segmentation (DeepLabv3) Code
김현우 2021. 9. 23. 17:38from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from types import ModuleType
class Bottleneck(nn.Module):
def __init__(self, in_ch, out_ch, stride, dilation, downsample):
super(Bottleneck, self).__init__()
mid_ch = out_ch // 4
self.conv1 = nn.Conv2d(in_channels=in_ch, out_channels=mid_ch, kernel_size=1, stride=1, padding=0, dilation=dilation, bias=False)
self.bn1 = nn.BatchNorm2d(num_features=mid_ch)
self.conv2 = nn.Conv2d(in_channels=mid_ch, out_channels=mid_ch, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, bias=False)
self.bn2 = nn.BatchNorm2d(num_features=mid_ch)
self.conv3 = nn.Conv2d(in_channels=mid_ch, out_channels=out_ch, kernel_size=1, stride=1, padding=0, dilation=dilation, bias=False)
self.bn3 = nn.BatchNorm2d(num_features=out_ch)
self.relu = nn.ReLU(inplace=True)
if downsample:
self.downsample = nn.Sequential(
nn.Conv2d(in_channels=in_ch, out_channels=out_ch, kernel_size=1, stride=stride, padding=0, dilation=dilation, bias=False),
nn.BatchNorm2d(num_features=out_ch)
)
self.is_downsample = True
else:
self.is_downsample = False
def forward(self, x):
h = self.bn1(self.conv1(x))
h = self.bn2(self.conv2(h))
h = self.bn3(self.conv3(h))
h = self.relu(h)
if self.is_downsample:
h += self.downsample(x)
else:
h += x
return h
class ResLayer(nn.Sequential):
def __init__(self, n_layers, in_ch, out_ch, stride, dilation, multi_grid=0):
super(ResLayer, self).__init__()
multi_grids = [1, 2, 2] if multi_grid else [1 for _ in range(n_layers)]
for i in range(n_layers):
self.add_module(
"{}".format(i),
Bottleneck(
in_ch=(in_ch if i == 0 else out_ch),
out_ch=out_ch,
stride=(stride if i == 0 else 1),
dilation=dilation * multi_grids[i],
downsample=(True if i == 0 else False), # Downsampling is only in the first block (i=0)
),
)
class IntermediateLayerGetter(nn.Sequential):
def __init__(self, n_blocks, ch, atrous_rates, output_stride):
super(IntermediateLayerGetter, self).__init__()
# Stride and dilation
if output_stride == 8:
s = [1, 2, 1, 1]
d = [1, 1, 2, 4]
elif output_stride == 16:
s = [1, 2, 2, 1]
d = [1, 1, 1, 2]
self.add_module("conv1", nn.Conv2d(in_channels=3, out_channels=64, kernel_size=7, stride=2, padding=3, bias=False))
self.add_module("bn1", nn.BatchNorm2d(64))
self.add_module("relu", nn.ReLU(inplace=True))
self.add_module("maxpool", nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1))
self.add_module("layer1", ResLayer(n_blocks[0], ch[0], ch[2], s[0], d[0], 0))
self.add_module("layer2", ResLayer(n_blocks[1], ch[2], ch[3], s[1], d[1], 0))
self.add_module("layer3", ResLayer(n_blocks[2], ch[3], ch[4], s[2], d[2], 0))
self.add_module("layer4", ResLayer(n_blocks[3], ch[4], ch[5], s[3], d[3], 1)) # multi_grid 넣을라면 1 아니면 0
class ASPPConv(nn.Module):
def __init__(self, inplanes, outplanes, kernel_size, padding, dilation):
super(ASPPConv, self).__init__()
self.atrous_conv = nn.Conv2d(inplanes, outplanes, kernel_size=kernel_size,
stride=1, padding=padding, dilation=dilation, bias=False)
self.bn = nn.BatchNorm2d(outplanes)
self.relu = nn.ReLU()
def forward(self, x):
x = self.atrous_conv(x)
x = self.bn(x)
return self.relu(x)
class ASPPPooling(nn.Module):
def __init__(self, inplanes, outplanes):
super(ASPPPooling, self).__init__()
self.globalavgpool = nn.AdaptiveAvgPool2d((1, 1))
self.conv = nn.Conv2d(inplanes, outplanes, 1, stride=1, bias=False)
self.bn = nn.BatchNorm2d(outplanes)
self.relu = nn.ReLU()
def forward(self, x):
x = self.globalavgpool(x)
x = self.conv(x)
x = self.bn(x)
return self.relu(x)
class ASPP(nn.Module):
def __init__(self, inplanes, outplanes):
super(ASPP, self).__init__()
dilations = [1, 6, 12, 18]
self.aspp1 = ASPPConv(inplanes, outplanes, 1, padding=0, dilation=dilations[0])
self.aspp2 = ASPPConv(inplanes, outplanes, 3, padding=dilations[1], dilation=dilations[1])
self.aspp3 = ASPPConv(inplanes, outplanes, 3, padding=dilations[2], dilation=dilations[2])
self.aspp4 = ASPPConv(inplanes, outplanes, 3, padding=dilations[3], dilation=dilations[3])
self.global_avg_pool = ASPPPooling(inplanes, outplanes)
self.project = nn.Sequential(
nn.Conv2d(outplanes*5, outplanes, 1, bias=False),
nn.BatchNorm2d(outplanes),
nn.ReLU(),
nn.Dropout(0.5)
)
def forward(self, x):
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.interpolate(x5, size=x.size()[2:], mode='bilinear', align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.project(x)
return x
class DeepLabHead(nn.Sequential):
def __init__(self, ch, out_ch, n_classes):
super(DeepLabHead, self).__init__()
self.add_module("0", ASPP(ch[-1], out_ch))
self.add_module("1", nn.Conv2d(out_ch, out_ch, kernel_size=3, stride=1, padding=1 , bias=False))
self.add_module("2", nn.BatchNorm2d(out_ch))
self.add_module("3", nn.ReLU())
self.add_module("4", nn.Conv2d(out_ch, n_classes, kernel_size=1, stride=1))
class DeepLabV3(nn.Sequential):
def __init__(self, n_classes, n_blocks, atrous_rates):
super(DeepLabV3, self).__init__()
ch = [64 * 2 ** p for p in range(6)]
self.backbone = IntermediateLayerGetter(n_blocks=[3, 4, 23, 3], ch=[64 * 2 ** p for p in range(6)], atrous_rates=[6, 12, 18, 24], output_stride=16)
self.classifier = DeepLabHead(ch=[64 * 2 ** p for p in range(6)], out_ch=256, n_classes=21)
def forward(self, x):
h = self.backbone(x)
h = self.classifier(h)
h = F.interpolate(h, size=x.shape[2:], mode="bilinear", align_corners=False)
return h