Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 22 | 23 | 24 | 25 | 26 | 27 | 28 |
| 29 | 30 |
Tags
- hackerrank
- Semantic Segmentation
- 프로그래머스
- 파이썬
- 큐
- eda
- Image Segmentation
- Object Detection
- 협업필터링
- TEAM EDA
- MySQL
- 나는 리뷰어다
- Machine Learning Advanced
- 입문
- TEAM-EDA
- 엘리스
- Recsys-KR
- 한빛미디어
- 나는리뷰어다
- 코딩테스트
- Segmentation
- 추천시스템
- DFS
- 3줄 논문
- 튜토리얼
- 알고리즘
- Python
- pytorch
- DilatedNet
- 스택
Archives
- Today
- Total
목록2019/09/12 (1)
TEAM EDA
Chris의 Feature Engineering 팁
원문 : https://www.kaggle.com/c/ieee-fraud-detection/discussion/108575#latest-624919 IEEE-CIS Fraud Detection Can you detect fraud from customer transactions? www.kaggle.com Feature Engineering Techniques Engineering features is key to improving your LB score. Below are some ideas on how to engineer new features. Create a new feature and then evaluate it with a local validation scheme to see if it..
EDA Study/캐글
2019. 9. 12. 23:32