Notice
Recent Posts
Recent Comments
Link
| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 15 | 16 | 17 | 18 | 19 | 20 | 21 |
| 22 | 23 | 24 | 25 | 26 | 27 | 28 |
| 29 | 30 |
Tags
- Segmentation
- hackerrank
- 큐
- eda
- Object Detection
- 스택
- DFS
- Image Segmentation
- 3줄 논문
- 엘리스
- 튜토리얼
- pytorch
- 한빛미디어
- Machine Learning Advanced
- 나는 리뷰어다
- 나는리뷰어다
- TEAM-EDA
- MySQL
- TEAM EDA
- 프로그래머스
- 알고리즘
- 코딩테스트
- Semantic Segmentation
- 파이썬
- 입문
- DilatedNet
- Python
- 협업필터링
- Recsys-KR
- 추천시스템
Archives
- Today
- Total
목록2019/09/12 (1)
TEAM EDA
Chris의 Feature Engineering 팁
원문 : https://www.kaggle.com/c/ieee-fraud-detection/discussion/108575#latest-624919 IEEE-CIS Fraud Detection Can you detect fraud from customer transactions? www.kaggle.com Feature Engineering Techniques Engineering features is key to improving your LB score. Below are some ideas on how to engineer new features. Create a new feature and then evaluate it with a local validation scheme to see if it..
EDA Study/캐글
2019. 9. 12. 23:32