일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 추천시스템
- pytorch
- 협업필터링
- Python
- 코딩테스트
- 나는 리뷰어다
- 나는리뷰어다
- 큐
- 스택
- 파이썬
- DFS
- 입문
- 튜토리얼
- TEAM EDA
- eda
- 3줄 논문
- TEAM-EDA
- hackerrank
- 한빛미디어
- Object Detection
- Image Segmentation
- Segmentation
- DilatedNet
- 엘리스
- 알고리즘
- 프로그래머스
- Semantic Segmentation
- Machine Learning Advanced
- MySQL
- Recsys-KR
- Today
- Total
TEAM EDA
Day10 : Linear Discriminant Analysis(LDA) 본문
이번주 슬라이드:
https://lagunita.stanford.edu/c4x/HumanitiesScience/StatLearning/asset/classification.pdf
교재 4.4 중 4.4.1, 4.4.2를 공부하시면 됩니다. (영문: 138~ 141, 국문: 159 ~ 164p)
*Linear Discriminant Analysis and Bayes Theorem (7:12)-4.4.1*
https://www.youtube.com/watch?v=RfrGiG1Hm3M&list=PL5-da3qGB5IC4vaDba5ClatUmFppXLAhE
*Univariate Linear Discriminant Analysis (7:37)-4.4.2*
https://www.youtube.com/watch?v=QG0pVJXT6EU&list=PL5-da3qGB5IC4vaDba5ClatUmFppXLAhE
1. Discriminant Analysis
판별분석은 각각의 클래스가 가지는 X의 분포를 모델링하고 베이지안 이론의 접근을 통해서 X일 때, Y의 클래스를 가질 확률을 추론하는 것이다. (두 개 이상의 모집단에서 추출된 표본들이 지니고 있는 정보를 이용하여 이 표본들이 어느 모집단에서 추출된 것인지를 결정해 줄 수 있는 기준을 찾는 분석법)
만약 우리가 Normal(Gaussian)분포를 각각의 클래스에 대해 사용한다면, linear or quadratic 판별 분석이 된다. 먼저 베이지안 이론이 뭔지부터 확인해보록 하겠습니다.
위의 슬라이드에서 보면 X = x일때, Y = k 일 확률을 추론해내는 방식입니다. 여기에서 들어가는 판별분석의 개념은 Y=k일때 X=x의 확률을 사용한다는 점이고, Pr(Y=k)라는 사전확률을 알고 있어서 사용한다는게 특징입니다.
판별분석을 사용하는 이유?
- 클래스가 잘 분리되면 로지스틱 회귀모델에 대한 매개 변수 추정치가 놀랍게도 불안정합니다. 선형 판별 분석은 이 문제를 겪지 않습니다.
- n이 작고 각 클래스에서 예측값 x의 분포가 normal분포이면 선형판별분석은 로지스틱회귀보다 더 안정적입니다.
- 선형 판별 분석은 Y클래스가 2개 이상이면 데이터의 저차원뷰를 제공하기 떄문에 일반적으로 사용됩니다.
X = x일때, 어떤 클래스로 분류되는지 판단하기 위해서는 어떤 k를 가지는게 가장 확률이 큰지 봐야합니다. 로그를 취하고 k에 의존하지 않는 부분을 버리는 것은 x를 판별 점수가 가장 큰 부분에 할당하는 것과 동일합니다.
일반적으로 우리는 위의 매개변수 값들을 알지 못합니다. 이 경우 우리는 단순히 매개 변수를 추정하고 규칙에 연결하는 방식을 사용합니다.
2. 예시
위의 그림은 Fisher Discriminant를 나타낸 plot입니다.
'EDA Study > 수학' 카테고리의 다른 글
Day12 : QDA and Naive Bayes (1) | 2018.11.24 |
---|---|
Day11 : Multivariate Linear Discriminant Analysis and ROC Curves (0) | 2018.11.24 |
Day9 : Logistic Regression (0) | 2018.11.24 |
Day8 : Classification (0) | 2018.11.24 |
Day7 : 1주차 질의응답 해설 (0) | 2018.11.19 |