일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 스택
- DilatedNet
- 알고리즘
- 추천시스템
- Recsys-KR
- Python
- TEAM-EDA
- 큐
- Image Segmentation
- 파이썬
- TEAM EDA
- Semantic Segmentation
- 3줄 논문
- 협업필터링
- DFS
- Object Detection
- MySQL
- 나는 리뷰어다
- 한빛미디어
- pytorch
- 코딩테스트
- 튜토리얼
- eda
- 입문
- 나는리뷰어다
- hackerrank
- 엘리스
- Machine Learning Advanced
- 프로그래머스
- Segmentation
- Today
- Total
목록overfitting (2)
TEAM EDA
이번 글에서는 Overfitting과 Dropout에 대해서 배워보도록 하겠습니다. 이번 글은 EDWITH에서 진행하는 파이토치로 시작하는 딥러닝 기초를 토대로 하였고 같이 스터디하는 팀원분들의 자료를 바탕으로 작성하였습니다. 목차 Overfitting Regularization Dropout Code : mnist_nn_dropout 1. Overfitting 과도하게 현재 데이터에 대해 모델을 learning을 한 경우. 즉, Training data에 대해 acc는 높지만 Test data에 대해 acc는 낮은 현상 해결 training data를 늘린다. features의 수를 줄인다. (차원의 저주를 피하기 위함) Regularization Dropout 2. Regularization 데이터에..
*강의* Assessing Model Accuracy and Bias-Variance Trade-off (10:04)Classification Problems and K-Nearest Neighbors (15:37)Lab: Introduction to R (14:12) - optional *추가자료*bias and variance 지난번에 이어서 선형회귀에 대해 계속 보도록 하겠습니다. 기본적으로 선형회귀 모델은 아래와 같습니다. p+1개의 파라미터를 가지고 있고, Training 데이터에 의해서 파라미터들이 결정됩니다. 선형회귀 모델은 기본적으로 정확하지는 않지만 알려지지 않은 f(x)를 대략적으로 해석해볼 수 있다는것에 의의가 있습니다. 위의 두 사진만 봐도 이해 되듯이 단순한 선형회귀 모델보다는 q..