Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
Tags
- 큐
- TEAM-EDA
- 한빛미디어
- Python
- 알고리즘
- 입문
- pytorch
- 튜토리얼
- Object Detection
- 나는 리뷰어다
- MySQL
- 프로그래머스
- Image Segmentation
- Machine Learning Advanced
- 스택
- DilatedNet
- Segmentation
- 엘리스
- Recsys-KR
- hackerrank
- 추천시스템
- 협업필터링
- 3줄 논문
- DFS
- TEAM EDA
- eda
- Semantic Segmentation
- 코딩테스트
- 파이썬
- 나는리뷰어다
Archives
- Today
- Total
TEAM EDA
Multi-Scale Context Aggregation by Dilated Convolutions (DilatedNet) Code 본문
EDA Study/Image Segmentation
Multi-Scale Context Aggregation by Dilated Convolutions (DilatedNet) Code
김현우 2021. 9. 22. 17:03DilatedNet - FrontEnd
DilatedNet - Context Module
import torch
import torch.nn as nn
from torch.nn import functional as F
def conv_relu(in_ch, out_ch, size=3, rate=1):
conv_relu = nn.Sequential(nn.Conv2d(in_channels=in_ch,
out_channels=out_ch,
kernel_size=size,
stride=1,
padding=rate,
dilation=rate),
nn.ReLU())
return conv_relu
class VGG16(nn.Module):
def __init__(self):
super(VGG16, self).__init__()
self.features1 = nn.Sequential(conv_relu(3, 64, 3, 1),
conv_relu(64, 64, 3, 1),
nn.MaxPool2d(2, stride=2, padding=0))
self.features2 = nn.Sequential(conv_relu(64, 128, 3, 1),
conv_relu(128, 128, 3, 1),
nn.MaxPool2d(2, stride=2, padding=0))
self.features3 = nn.Sequential(conv_relu(128, 256, 3, 1),
conv_relu(256, 256, 3, 1),
conv_relu(256, 256, 3, 1),
nn.MaxPool2d(2, stride=2, padding=0))
self.features4 = nn.Sequential(conv_relu(256, 512, 3, 1),
conv_relu(512, 512, 3, 1),
conv_relu(512, 512, 3, 1))
self.features5 = nn.Sequential(conv_relu(512, 512, 3, rate=2),
conv_relu(512, 512, 3, rate=2),
conv_relu(512, 512, 3, rate=2))
def forward(self, x):
out = self.features1(x)
out = self.features2(out)
out = self.features3(out)
out = self.features4(out)
out = self.features5(out)
return out
class classifier(nn.Module):
def __init__(self, num_classes):
super(classifier, self).__init__()
self.classifier = nn.Sequential(nn.Conv2d(512, 4096, kernel_size=7, dilation=4, padding=12),
nn.ReLU(),
nn.Dropout2d(0.5),
nn.Conv2d(4096, 4096, kernel_size=1),
nn.ReLU(),
nn.Dropout2d(0.5),
nn.Conv2d(4096, num_classes, kernel_size=1)
)
def forward(self, x):
out = self.classifier(x)
return out
class BasicContextModule(nn.Module):
def __init__(self, num_classes):
super(BasicContextModule, self).__init__()
self.layer1 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 1))
self.layer2 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 1))
self.layer3 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 2))
self.layer4 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 4))
self.layer5 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 8))
self.layer6 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 16))
self.layer7 = nn.Sequential(conv_relu(num_classes, num_classes, 3, 1))
# No Truncation
self.layer8 = nn.Sequential(nn.Conv2d(num_classes, num_classes, 1, 1))
def forward(self, x):
out = self.layer1(x)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.layer5(out)
out = self.layer6(out)
out = self.layer7(out)
out = self.layer8(out)
return out
class DilatedNet(nn.Module):
def __init__(self, backbone, classifier, context_module):
super(DilatedNet, self).__init__()
self.backbone = backbone
self.classifier = classifier
self.context_module = context_module
self.deconv = nn.ConvTranspose2d(in_channels=12,
out_channels=12,
kernel_size=16,
stride=8,
padding=4)
def forward(self, x):
x = self.backbone(x)
x = self.classifier(x)
x = self.context_module(x)
out = self.deconv(x)
return out